To create a Pandas DataFrame by appending one row at a time, you can use multiple methods. Below is a revised guide with corrected examples and explanations, ensuring clarity and efficiency.
Method 1: Using loc
or iloc
(Inefficient for Large Data)
Append rows by specifying the next index.
Use Case: Small datasets or one-off additions.
Example 1: Appending Rows with loc
import pandas as pd
# Create an empty DataFrame with columns
df = pd.DataFrame(columns=["Name", "Age", "City"])
# Append rows one by one
df.loc[0] = ["Alice", 25, "New York"]
df.loc[1] = ["Bob", 30, "London"]
df.loc[2] = {"Name": "Charlie", "Age": 35, "City": "Paris"}
print(df)
Output:
Name Age City
0 Alice 25 New York
1 Bob 30 London
2 Charlie 35 Paris
Method 2: Using pd.concat()
with Single-Row DataFrames
Collect rows as individual DataFrames and concatenate them once.
Use Case: Moderate-sized datasets where you need incremental control.
Example 2: Collect Single-Row DataFrames and Concatenate
rows = []
# Append rows as single-row DataFrames
rows.append(pd.DataFrame([{"Name": "Alice", "Age": 25, "City": "New York"}]))
rows.append(pd.DataFrame([{"Name": "Bob", "Age": 30, "City": "London"}]))
rows.append(pd.DataFrame([{"Name": "Charlie", "Age": 35, "City": "Paris"}]))
# Concatenate all rows into a DataFrame
df = pd.concat(rows, ignore_index=True)
print(df)
Output:
Name Age City
0 Alice 25 New York
1 Bob 30 London
2 Charlie 35 Paris
Method 3: Collect Rows in a List (Most Efficient)
Collect rows as dictionaries in a list and create the DataFrame once.
Use Case: Large datasets or performance-critical applications.
Example 3: Build a List of Dictionaries
rows = []
rows.append({"Name": "Alice", "Age": 25, "City": "New York"})
rows.append({"Name": "Bob", "Age": 30, "City": "London"})
rows.append({"Name": "Charlie", "Age": 35, "City": "Paris"})
# Convert the list to a DataFrame in one step
df = pd.DataFrame(rows)
print(df)
Output:
Name Age City
0 Alice 25 New York
1 Bob 30 London
2 Charlie 35 Paris
Method 4: Using pd.concat()
in a Loop (Inefficient)
For incremental appending (e.g., real-time data streams).
Use Case: Avoid unless absolutely necessary.
Example 4: Simulate Real-Time Appending
df = pd.DataFrame(columns=["Name", "Age", "City"])
# Simulate a loop (e.g., reading data from a source)
for i in range(3):
new_row = pd.DataFrame([{"Name": f"User_{i}", "Age": 20+i, "City": "Berlin"}])
df = pd.concat([df, new_row], ignore_index=True) # Reset index after each append
print(df)
Output:
Name Age City
0 User_0 20 Berlin
1 User_1 21 Berlin
2 User_2 22 Berlin
Key Notes
- Avoid
df.append()
:
Deprecated in Pandas 1.4.0 and removed in Pandas 2.0. Usepd.concat()
instead. - Efficiency:
- Inefficient: Appending rows one by one (Methods 1 and 4) has O(n²) time complexity.
- Efficient: Collect rows in a list (Method 3) or use batch concatenation (Method 2) for O(n) time complexity.
- Alternatives for Large Data:
- Use libraries like Polars (faster for row-wise operations) or Dask for distributed computing.
Performance Comparison
Method | Time Complexity | Use Case |
---|---|---|
loc or concat in a loop | O(n²) | Small datasets or unavoidable incremental updates |
pd.concat() with single-row DataFrames | O(n) | Moderate-sized data with incremental control |
Collect rows in a list | O(n) | Best for large datasets |
Final Recommendation
- For Small Data: Use
loc
(Method 1) for simplicity. - For Moderate Data: Use
pd.concat()
with a list of single-row DataFrames (Method 2). - For Large Data: Always collect rows in a list and create the DataFrame once (Method 3).
- For Real-Time Data: Use a buffer (e.g., collect 1000 rows at a time) to minimize
concat
calls.
Example 5: Buffered Appending (Optimized for Real-Time Data)
buffer = []
buffer_size = 1000 # Adjust based on memory constraints
for i in range(1, 2501): # Simulate 2500 rows of data
row = {"ID": i, "Value": i * 10}
buffer.append(row)
# Append in chunks to reduce concat calls
if len(buffer) >= buffer_size:
df = pd.concat([df, pd.DataFrame(buffer)], ignore_index=True)
buffer = [] # Reset buffer
# Append remaining rows
if buffer:
df = pd.concat([df, pd.DataFrame(buffer)], ignore_index=True)
By following these methods, you can efficiently build DataFrames in Pandas while minimizing performance overhead!